Digital Circuits Theory - Laboratory						
Academic year	Laboratory exercises on	Mode of studies	Field of studies	Supervisor	Group	Section
2020/2021	Wednesday	SSI	Informatics	KP	1	3
	15:30 – 17:00	331	iiiioiiiialics	IXE	ı	J

Report from Exercise No 6

Performed on: 28.10.2020

Exercise Topic: Selected arithmetic circuits

Performed by:

<u>Dawid Grobert</u> Julia Boczkowska

Purpose of the exercises

The aim of the exercise was to learn about such elements as: adder, comparator. More generally, we were dealing with arithmetic combinations and sequential systems performing arithmetic operations.

1 Description of the first task

Task 1

Using prepared by yourself test data (pairs of input values and the expected outcomes for the operation), verify the working mode of 4-bit adder with respect to the used representation of binary numbers, whether it adds numbers:

- a) with sign, in Sign-Magnitude notation,
- b) with sign, in Diminished Radix Complement notation,

For X + Y

 $z_s = x_s = y_s \longrightarrow z_s = 0$

- c) with sign, in Radix Complement notation,
- d) without sign.

1.1 Analysis of the task

My test data will be:

$$(X)_{10} = 2 \longrightarrow (X)_2 = 010$$

 $(Y)_{10} = 4 \longrightarrow (Y)_2 = 100$

For (-X) + (-Y)

 $z_s = x_s = y_s \longrightarrow z_s = 1$

1.2 Sign Magnitude calculations

a) with sign in Sign-Magnitude notation

$$|X| = 010 \\ |Y| = 100 \\ |Z| = 110$$

$$|Z| = 110$$

$$(Z)_2^{SM} = 0.110$$

$$(Z)_2^{SM} = 1.110$$

$$|Z| = 110$$

$$(Z)_2^{SM} = 1.110$$

$$|Z| = 110$$

$$|Z| = 111$$

$$|Z| = 111$$
 no carry
$$|Z|_2^{SM} = 0.010$$

$$|Z|_2^{SM} = 0.010$$
 Expected result
$$|Z|_2^{SM} = 0.010$$
 Expected result
$$|Z|_2^{SM} = 0.010$$

1.2.1 The circuit diagram of Sign-Magnitude Notation adder

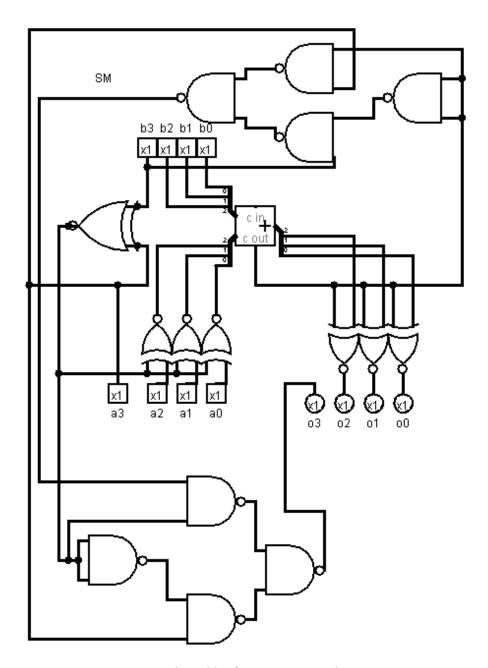


Figure 1: 4-bit Adder for Sign-Magnitude Notation

1.3 Diminished Radix Complement Calculations

b) with sign, in Diminished Radix Complement notation

$$\begin{array}{c} (X)_2^{DRC} = 0.010 \\ (Y)_2^{DRC} = 0.100 \\ \hline (Z)_2^{DRC} = 0.110 \\ \hline \\ (Z)_2^{DRC} = 0.110 \\ \hline \\ (Z)_2^{DRC} = 1.001 \\ \hline \\ (Z)_2^{DRC} = 1.001 \\ \hline \\ (Z)_2^{DRC} = 1.001 \\ \hline \\ (Z)_2^{DRC} = 0.010 \\ \hline \\ (Z)_2^{DRC} = 0.$$

1.3.1 The circuit diagram of Diminished Radix Complement Notation adder

The 4-bit adder for Diminished Radix Complement notation is as follows:

Diminished Radix Complement

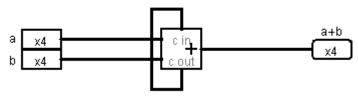


Figure 2: 4-bit Adder for Diminished Radix Complement notation

1.4 Radix Complement Calculations

c) with sign, in Radix Complement notation

$$\begin{array}{c} (X)_2^{RC} = 0.010 \\ (Y)_2^{RC} = 0.100 \\ \hline (Z)_2^{RC} = 0.110 \\ \end{array} \\ + \begin{array}{c} (-X)_2^{RC} = 1.110 \\ (-Y)_2^{RC} = 1.100 \\ \hline (Z)_2^{RC} = 1.010 \\ \end{array} \\ + \begin{array}{c} (-X)_2^{RC} = 1.110 \\ (Y)_2^{RC} = 0.100 \\ \hline (Z)_2^{RC} = 1.100 \\ \end{array} \\ + \begin{array}{c} (X)_2^{RC} = 0.010 \\ (Y)_2^{RC} = 1.100 \\ \hline (Z)_2^{RC} = 1.110 \\ \end{array} \\ + \begin{array}{c} (X)_2^{RC} = 0.010 \\ \hline (Z)_2^{RC} = 1.110 \\ \hline (Z)_2^{RC} = 1.110 \\ \hline \end{array} \\ + \begin{array}{c} (X)_2^{RC} = 0.010 \\ \hline (Z)_2^{RC} = 1.110 \\ \hline \end{array} \\ + \begin{array}{c} (X)_2^{RC} = 0.010 \\ \hline (Z)_2^{RC} = 1.110 \\ \hline \end{array} \\ + \begin{array}{c} (X)_2^{RC} = 0.010 \\ \hline (Z)_2^{RC} = 1.110 \\ \hline \end{array} \\ + \begin{array}{c} (X)_2^{RC} = 0.010$$

1.4.1 The circuit diagram of Radix Complement Notation adder

The 4-bit adder for Radix Complement notation is as follows:

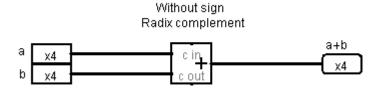


Figure 3: 4-bit Adder for Radix Complement notation

1.5 Without Sign calculations

d) without sign

$$\frac{|X| = 010}{|Y| = 100}$$
 \} + \frac{|Z| = 110}

Expected result

1.5.1 The circuit diagram of numbers without sign adder

The 4-bit adder for numbers without sign is as follows:

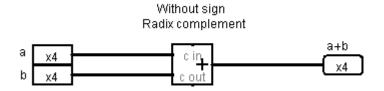


Figure 4: 4-bit Adder for unsigned numeric type

This space has been intentionally left blank.

Description of the second task 2

(Task 2)

Using prepared by yourself test data (pairs of input values and the expected outcomes of the operation), verify the working mode of 4-bit comparator with respect to the used representation of binary numbers, whether it adds numbers:

- a) with sign, in Sign-Magnitude notation,
- b) with sign, in Diminished Radix Complement notation,
- c) with sign, in Radix Complement notation,
- d) without sign.

2.1 Analysis of the task

My test data will be:

$$(X)_{10} = 2 \longrightarrow (X)_2 = 010$$

$$(Y)_{10} = 4 \longrightarrow (Y)_2 = 100$$

- a) with sign in Sign-Magnitude notation
- b) with sign, in Diminished Radix Complement notation

Expected result:

$$\begin{array}{c} (X)_2^{SM} = 0.010 \\ (Y)_2^{SM} = 0.100 \end{array} \qquad X < Y \qquad \qquad \begin{array}{c} (X)_2^{DRC} = 0.010 \\ (Y)_2^{DRC} = 0.100 \end{array} \qquad X < Y$$

$$\begin{array}{l} (-X)_2^{SM} = 1.010 \\ (-Y)_2^{SM} = 1.100 \end{array} \hspace{2cm} X > Y \\ \hspace{2cm} (-X)_2^{DRC} = 1.101 \\ (-Y)_2^{DRC} = 1.011 \end{array} \hspace{2cm} X > Y$$

$$\begin{array}{c} (-X)_2^{SM} = 1.010 \\ (Y)_2^{SM} = 0.100 \end{array} \} \hspace{1cm} X < Y \hspace{1cm} \begin{array}{c} (-X)_2^{DRC} = 1.101 \\ (Y)_2^{DRC} = 0.100 \end{array} \} \hspace{1cm} X < Y \\ \\ \begin{array}{c} (X)_2^{SM} = 0.010 \\ (-Y)_2^{SM} = 1.100 \end{array} \} \hspace{1cm} X > Y \hspace{1cm} \\ \begin{array}{c} (X)_2^{DRC} = 0.010 \\ (-Y)_2^{DRC} = 1.011 \end{array} \} \hspace{1cm} X > Y \end{array}$$

$$\begin{array}{c} (X)_2^{SM} = 0.010 \\ (-Y)_2^{SM} = 1.100 \end{array} \hspace{2cm} X > Y \hspace{1cm} (X)_2^{DRC} = 0.010 \\ (-Y)_2^{DRC} = 1.011 \end{array} \hspace{2cm} X > Y \hspace{1cm} (X)_2^{DRC} = 0.010 \\ (X)_2^{DRC} = 0.01$$

c) with sign, in Radix Complement notation

d) without sign

Expected result:

$$\begin{array}{c} \text{Expected result:} \\ (X)_2 = 010 \\ (Y)_2 = 100 \end{array} \} \hspace{1cm} X < Y$$

$$(X)_2^{RC} = 0.010$$

$$(Y)_2^{RC} = 0.100$$

$$X < Y$$

$$\begin{array}{l} (-X)_2^{RC} = 1.110 \\ (-Y)_2^{RC} = 1.100 \end{array} \} \qquad X > Y$$

$$\begin{array}{c} (-X)_2^{RC} = 1.110 \\ (Y)_2^{RC} = 0.100 \end{array} \} \qquad X < Y$$

$$(X)_2^{RC} = 0.010$$

$$(-Y)_2^{RC} = 1.100$$

$$X > Y$$

2.2 Sign-Magnitude notation comparator circuit diagram

The 4-bit comparator for Sign-Magnitude notation is as follows:

SM If: both are 1 -> reverse result If: B is 1, then B < A

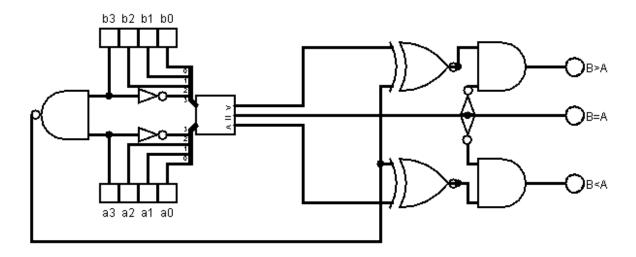


Figure 5: 4-bit comparator for Sign-Magnitude notation

2.3 Diminished Radix Complement comparator circuit diagram

The 4-bit comparator for Diminished Radix Complement notation is as follows:

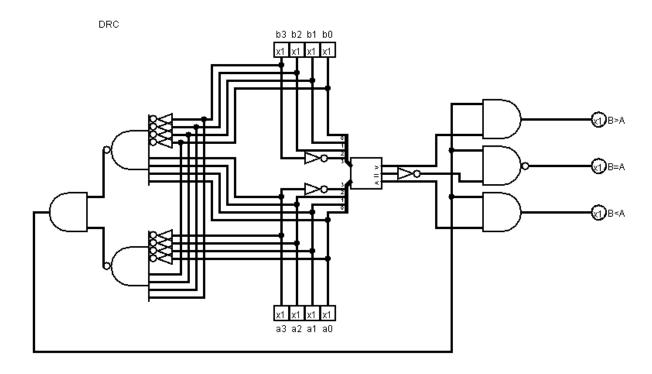


Figure 6: 4-bit comparator for Diminished Radix Complement notation

2.4 Radix Complement notation comparator circuit diagram

The 4-bit comparator for Radix Complement notation is as follows:

RC

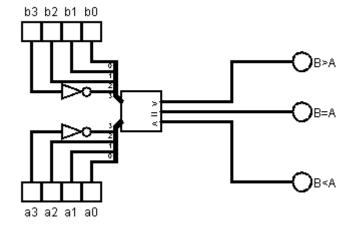


Figure 7: 4-bit comparator for Radix Complement notation

2.5 Circuit diagram for comparator of numbers without sign

The 4-bit comparator for numbers without sign is as follows:

Without sign

a b a b a a b a c b

Figure 8: 4-bit comparator for unsigned numeric types

This space has been intentionally left blank.

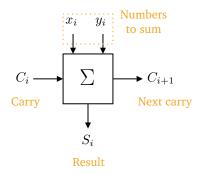
3 Description of the third task

(Task 3)

Obtain full 1-bit adder using NAND gates.

3.1 Analysis of the task

The circuit can be presented as follows:



3.2 Implementation

We can also very easily imagine and fill a similar Karnaugha grid. Truth Table can be helpful here.

S_i
0
1
1
0
1
0
0
1

And read out individual groups from it:

$$C_{i+1} = C_i y_i + x_i y_i + x_i C_i$$

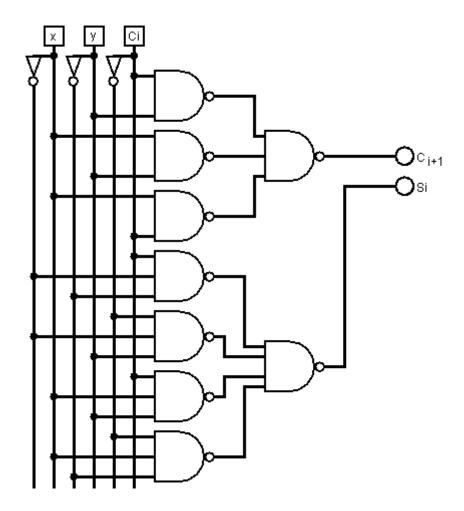
$$S_i = C_i \overline{x_i} \overline{y_i} + \overline{C_i} \overline{x_i} y_i + C_i x_i y_i + \overline{C_i} x_i \overline{y_i}$$

Implementation with NANDS:

$$\begin{split} C_{i+1} &= \overline{\overline{C_i \ y_i} \times \overline{x_i \ y_i} \ \times \ \overline{x_i \ \overline{C_i}}} \\ S_i &= \overline{\overline{C_i \ \overline{x_i} \ \overline{y_i}} \times \overline{\overline{C_i} \ \overline{x_i} \ y_i} \times \overline{\overline{C_i} \ x_i \ y_i} \times \overline{\overline{C_i} \ x_i \ \overline{y_i}}} \end{split}$$

3.3 Circuit diagram

Finally, we get the given circuit:



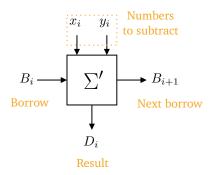
4 Description of the fourth task

Task 4

Obtain full 1-bit subtractor using NAND gates.

4.1 Analysis of the task

This type of task is even a mirror image of the previous task. The solution is almost the same.



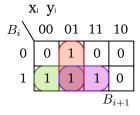
4.2 Implementation

Again, the easiest way to complete the Karnaugh map is with the first filled-in truth table.

\mathbf{X}_{i} \mathbf{y}_{i}					
$B_i \setminus$	00	01	11	10	
0	00	11	00	01	
1	11	10	11	00	
		1	B_{i+1}	D_i	

x_i	y_i	B_i	B_{i+1}	D_i
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1
			•	

Now we select the groups and we can see that D_i is identical to the summator's S_i , and B_{i+1} is literally a mirror image of the summator's map for C_{i+1} .



$$X_i$$
 Y_i
 B_i 00 01 11 10
0 0 1 0 1
1 0 1 0

$$\begin{split} B_{i+1} &= B_i \ \overline{x_i} + \overline{x_i} \ y_i + B_i \ y_i \\ D_i &= B_i \ \overline{x_i} \ \overline{y_i} + \overline{B_i} \ \overline{x_i} \ y_i + B_i \ x_i \ y_i \ + \ \overline{B_i} \ x_i \ \overline{y_i} \end{split}$$

12

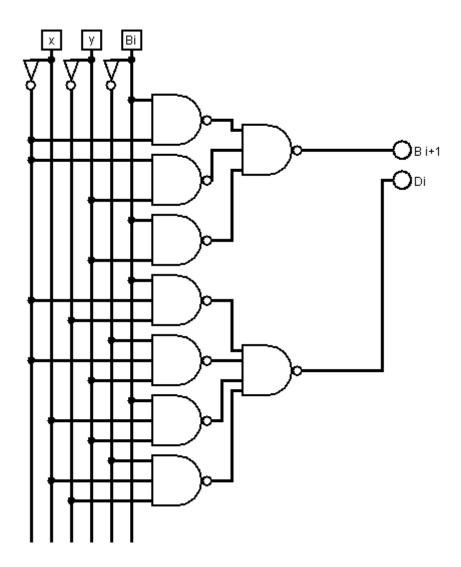
Implementation with NANDS:

$$B_{i+1} = \overline{\overline{B_i \ \overline{x_i}} \times \overline{\overline{x_i} \ y_i} \times \overline{B_i \ y_i}}$$

$$S_i = \overline{\overline{B_i \ \overline{x_i} \ \overline{y_i}} \times \overline{\overline{B_i} \ \overline{x_i} \ y_i} \times \overline{B_i \ x_i \ y_i} \times \overline{\overline{B_i} \ x_i \ \overline{y_i}}}$$

4.3 Circuit diagram

Finally, we get the given circuit:



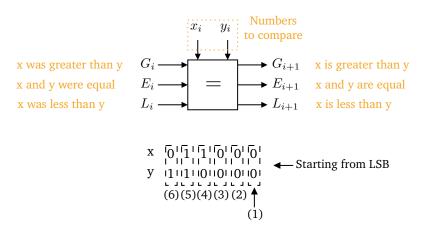
5 Description of the fifth task

Task 5

Obtain full 1-bit comparator with comparison starting from the least significant bits.

5.1 Analysis of the task

Again, let's start the task with a short analysis and a certain graphic representation of the layout



- (1) At this point the circuit thinks that the numbers are equal
- (2) Again, 0 is equal to 0. Circuit still thinks the numbers are equal
- (3) There is no other option for the circuit to know that the overall numbers are not equal. It still assumes that the numbers are equal.
- (4) Finally some numbers differ. As x_4 is 1, and y_4 is 0 the circuit at this moment knows that x is bigger.
- (5) Now we have two equal ones. However, from the previous comparison, the circuit still knows that x is somehow bigger.
- (6) Now y_6 is 1 and x_6 is 0. This means that y is definitely bigger. This is the final comparison.

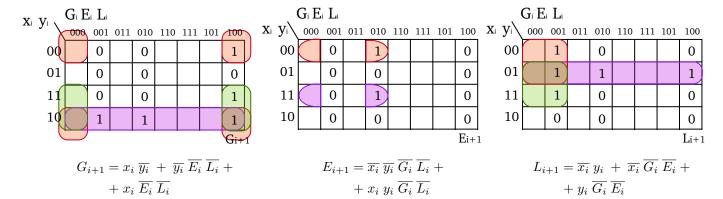
5.2 Implementation

This time without a truth table and with a short visual representation of the operation of this comparator. This is definitely enough to create a Karnaugh grid.

$G_{\scriptscriptstyle i}$ $E_{\scriptscriptstyle i}$ $L_{\scriptscriptstyle i}$								
$x_i y_i $	000	001	011	010	110	111	101	100
00		001		010				100
01		001		001				001
11		001		010				100
10		100		100				100
Gi+1Ei+1Li+1						Li+1		

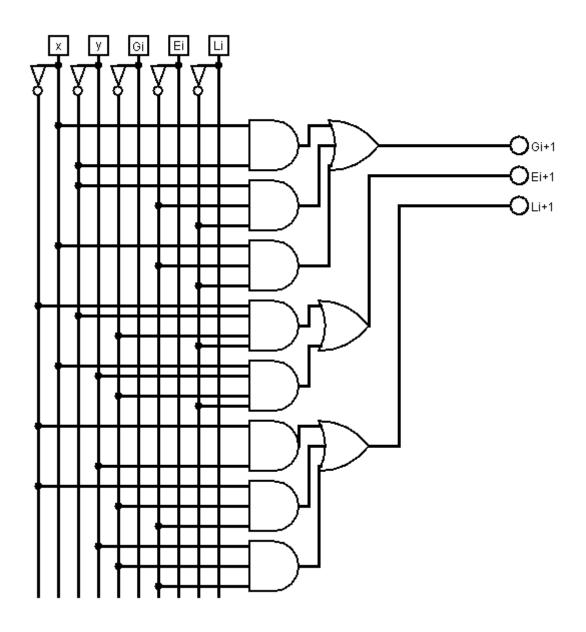
From this large Karnaugh map we get three Karnaugh maps.

I select the groups and derive the implementation using the AND, and OR gates.



5.3 Circuit diagram

Finally, we get the given circuit:



6 Conclusions

The biggest surprise was definitely the first two tasks - comparators and adders. Definitely their implementation gave a lot of trouble, and left a lot of confusion. However, the rest of the tasks did not seem to be quite problematic - although I made a mistake many times in tasks 3, 4, 5 by connecting the Z_{i+1} outputs to Z_i inputs, which in this matter remain completely independent of each other.